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Abstract 

Traditionally viewed as a set of switches regulating gene expression, epigenetic mechanisms may also operate as an information- 
processing system with symbolic and subsymbolic features. In this framework, gene-specific DNA methylation and other localized 

epigenetic marks act as symbolic ‘on/off’ signals, while repetitive and noncoding DNA elements form a substrate for probabilistic, 
distributed responses to environmental stimuli. This hybrid perspective parallels machine-learning approaches, where symbolic rep- 
resentations are combined with subsymbolic methods (e.g. neural networks) to achieve robust learning and adaptation. Here, we 
propose that epigenetic regulation integrates these two dimensions (i.e. symbolic control and subsymbolic redundancy) to enable 
cells to adapt to complex environmental challenges, maintain heritable memory of past exposures, and evolve. In this manuscript, 
we introduce the concept of epigenetic intelligence, clarifying the synergy between discrete, ‘symbolic’ epigenetic switches (e.g. gene- 
specific DNA methylation) and the more ‘subsymbolic’, distributed features of the genome (e.g. repetitive elements methylation). This 
approach appears to be novel, as existing literature has not explicitly framed epigenetic regulation within a neuro-symbolic artificial 
intelligence perspective. 
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inition of EI that encompasses both the analogy with cognitive 
architectures and the application of computational intelligence 
tools (e.g. machine learning and statistical modelling) to study 
epigenetic regulation. This framing aligns with earlier proposals 
that ascribe logic-like behaviour or decision-making capacity to 
cellular systems. For instance, Richardson [ 3 ] described epigenetic 
processes as mechanisms for extracting deep correlations from 

environmental inputs, while Ramanathan and Broach [ 4 ] ques- 
tioned whether cells can ‘think’ by integrating multiple signals to 
produce context-appropriate responses. 

A more extensive elaboration of this conceptual framework has 
been explored in a preprint currently available online [ 5 ]. 

A hybrid model of epigenetic control 
Epigenetic regulation encompasses a broad spectrum of mecha- 
nisms that operate at multiple scales, from fine-grained chemical 
modifications on DNA and histones to large-scale chromatin ar- 
chitecture. Within this complexity, two primary categories of reg- 
ulation can be conceptually distinguished [ 6 ]. 

The first is localized, discrete, and deterministic. DNA methy- 
lation at promoter CpG sites serves as a molecular switch, 
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Introduction 

Over the past two decades, epigenetics has transformed our un- 
derstanding of how cells adapt to environmental stimuli without 
altering the underlying DNA sequence [ 1 ]. Traditionally viewed as 
a set of molecular switches that regulate gene expression, epi- 
genetic mechanisms, particularly DNA methylation and histone 
modifications, are now seen as dynamic contributors to cellular 
memory and plasticity. Yet, a deeper conceptual framework may 
be needed to explain the ‘intelligence’ with which these systems 
operate. 

In parallel, advances in artificial intelligence (AI) have led to 
the rise of neuro-symbolic systems, which integrate logical, sym- 
bolic reasoning with the adaptability of neural networks [ 2 ]. These 
hybrid AI models exhibit robust learning, long-term memory, and 

plasticity qualities that resonate strikingly with biological regu- 
lation. Here, we propose that epigenetic mechanisms can be un- 
derstood through a similar lens. By viewing the genome as a hy- 
brid symbolic–subsymbolic system, we introduce the concept of 
‘epigenetic intelligence’ (EI), a framework that positions gene reg- 
ulation in analogy to computational process shaped by both rule- 
based and probabilistic information layers. We adopt a broad def- 
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Figure 1. A conceptual model of EI as a hybrid regulatory system. 
Symbolic (gene-specific) and subsymbolic (repetitive element-based) 
epigenetic controls exhibit complementary properties. Symbolic 
regulation enables interpretable and stable gene control via discrete 
marks such as CpG methylation, while subsymbolic elements offer 
distributed, probabilistic responsiveness through repetitive sequences 
and transposon activity. Their integration, shown in the upper right 
quadrant, defines EI—a framework that balances regulatory efficiency 
and interpretability to enhance adaptive generalization in complex 
environments. 
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urning gene expression on or off in a stable and inheritable man-
er [ 7 ]. Histone modifications further modulate gene accessibility,
nd topological structures such as topologically associating do-
ains (TADs) organize the genome into functionally distinct re-

ions. These features correspond to the symbolic dimension of
omputation, rule-based, interpretable, and hierarchically struc-
ured. They resemble logic gates in AI systems, offering precise
nd persistent control over gene expression. 

The second category is redundant, distributed, and probabilis-
ic. Repetitive DNA elements, including Long Interspersed Nuclear
lements (LINEs), Short Interspersed Nuclear Elements (SINEs),
nd endogenous retroviruses, form a dense, interconnected net-
ork throughout the genome [ 8 ]. These sequences were once

onsidered genomic ‘dark matter’, or even ‘junk DNA’, but are
ow recognized for their regulatory potential. Transposable ele-
ents can mobilize in response to stress or developmental cues,

eshaping gene networks. Noncoding RNAs also participate in
ne-tuning transcriptional responses. This ensemble forms a sub-
ymbolic regulatory layer, analogous to the distributed, weight-
ased adjustments of nodes in neural networks, supported by
exibility, redundancy, and context-sensitive modulation. Un-

ike discrete epigenetic marks, these mechanisms act collectively
nd stochastically, generating plasticity and robustness through
iversity. 

The integration of symbolic and subsymbolic layers allows the
enome to maintain both stability and dynamic adaptability. It
an preserve core regulatory programs, fixed through evolution,
hile remaining responsive to novel environmental inputs. This
ybrid architecture mirrors the strengths of neuro-symbolic AI
ystems: interpretability coupled with learning capacity. 

earning, memory, and feedback 

pigenetic systems exhibit multiple features that align with the
oncept of biological learning. Environmental exposures, rang-
ng from nutrition and toxins to psychosocial stressors, can in-
uce stable epigenetic modifications that endure across cell gen-
rations, encoding a molecular memory of past experiences.
hese changes influence developmental trajectories, immune re-
ponses, and even behavioural phenotypes. 

This adaptive process is dynamic and iterative. Cells contin-
ously update their epigenetic landscape in response to inter-
al and external signals, analogous to how artificial neural net-
orks adjust weights based on new input. Feedback mecha-
isms are crucial: when the activity of transposable elements dis-
upts genome integrity, repressive complexes such as the Krüppel-
ssociated box domain zinc finger proteins (KRAB-ZFPs) can re-
tore chromatin compaction [ 9 ]. Alternatively, if transposable ele-
ents activate beneficial gene programs, chromatin remodellers

ike p300 may stabilize their open conformation [ 10 ]. These loops
esemble reinforcement learning strategies, where beneficial out-
omes reinforce the epigenetic configuration. 

Such memory is not merely individual but can span gener-
tions. Transgenerational epigenetic inheritance suggests that
ome acquired epigenetic states are passed on to offspring, form-
ng a cumulative record of ancestral exposures. This property
ighlights the long-term learning potential of the epigenome and
ositions it as a central player in evolutionary adaptation. 

heoretical foundations: epigenetics meets 

earning theory 

oncepts from statistical learning theory provide a valuable
ramework for understanding the computational logic underlying
I. Key principles, such as the bias–variance trade-off, the Vapnik–
hervonenkis dimension, probably approximately correct learn-

ng, and the information bottleneck theorem, all find meaningful
arallels in biological regulation [ 11 , 12 ]. 

Symbolic epigenetic elements, such as methylation marks at
pG islands, impose a high-bias structure, providing consistent,
ule-based regulation that favours generalization over flexibility.
n contrast, the subsymbolic network of repetitive elements intro-
uces variance, enabling fine-grained, context-aware responses
 Fig. 1 ). This trade-off reflects the balance between overfitting and
nderfitting in machine-learning models, where a system must
eneralize well without becoming too rigid or too noisy [ 13 ]. To
larify their biological significance, we draw specific analogies; for
xample, CpG methylation patterns can be seen as high-bias ele-
ents, encoding stable, generalizable gene silencing. In contrast,

he activity of transposable elements introduces regulatory vari-
nce, enabling the system to respond adaptively to environmen-
al inputs. These dynamics reflect the classical machine-learning
alance between overfitting and generalization, interpreted here
s biological plasticity versus stability. 

Bayesian principles offer a compelling unification of these per-
pectives. In a Bayesian neuro-symbolic model, prior knowledge
ncoded in symbolic rules is updated through probabilistic in-
erence based on new data. Similarly, epigenetic regulation com-
ines stable, inherited patterns with plastic adjustments driven
y experience [ 14 ]. This integration allows cells to weigh histor-

cal stability against current demands, optimizing their regula-
ory output in uncertain environments. This conceptual map-
ing is supported by biological evidence. Regulatory proteins such
s KRAB-ZFPs and p300 mediate dynamic responses to envi-
onmental stimuli by repressing or activating specific genomic
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loci, including transposable elements that can influence gene 
regulation. These feedback mechanisms adjust the epigenetic 
landscape based on previous and current conditions, in a way that 
resembles how Bayesian systems update prior knowledge in light 
of new data. Such probabilistic adaptation, while not literal infer- 
ence, illustrates how cells weigh prior configurations with envi- 
ronmental signals to optimize gene expression under uncertainty.
Moreover, we have expanded the framework to explicitly incorpo- 
rate multiscale chromatin architecture. Structures such as TADs 
and enhancer–promoter loops play a key role in shaping gene 
regulation. TADs contribute to symbolic control by establishing 
stable, physical boundaries that constrain regulatory interactions 
in a rule-like manner. In contrast, enhancer–promoter loops en- 
able subsymbolic flexibility through transient, context-dependent 
contacts that fine-tune gene expression. Together, these 3D fea- 
tures integrate structural stability with dynamic adaptability, sup- 
porting the proposed dual-layer model and linking genome topol- 
ogy with principles from learning theory. However, the classifi- 
cation of transposable elements as subsymbolic is not absolute: 
many exhibit enhancer-like behaviour with precise spatiotempo- 
ral regulation [ 15 ]. Our model accounts for this by viewing the 
symbolic/subsymbolic divide as a continuum rather than a strict 
dichotomy. 

The genome, in this light, can be seen as a learning system,
one that encodes, updates, and refines regulatory logic through 

hybrid symbolic and subsymbolic operations. Rather than viewing 
epigenetics as a passive readout of environmental effects, the EI 
framework proposes it as an active and integrative mechanism,
capable of learning, reasoning, and adapting. 

This work aligns with the original cybernetic view of organ- 
isms as adaptive control systems. We frame EI as an intrinsic 
mechanism for minimizing uncertainty and maintaining home- 
ostasis in dynamic environments. By linking symbolic priors (bias) 
with stochastic adaptation (variance), the proposed model mirrors 
optimal stochastic control as a bias–variance trade-off system, 
essential for autonomous regulation in complex living systems 
[ 16 ]. 

Broader implications and future directions 

Reframing epigenetic regulation as a form of biological intelli- 
gence has broad implications. It enriches our understanding of 
genome function, offers a new paradigm for studying environ- 
mental adaptation, and suggests a biomimetic roadmap for de- 
veloping AI systems. 

In medicine, EI could inform personalized risk prediction based 

on the adaptability of an individual’s epigenetic profile. In syn- 
thetic biology, designing gene circuits with symbolic and subsym- 
bolic components may yield more robust, learning-capable organ- 
isms. 

Finally, this perspective invites deeper exploration of the paral- 
lels between cellular cognition and machine learning [ 17 , 18 ]. Just 
as neuro-symbolic AI systems bridge logic and data, cells appear 
to bridge inherited rules and learned responses. The same natural 
principles that underpin adaptation in biological systems are now 

being rediscovered and implemented in AI. 

Conclusion 

The genome may not only encode life, but it may compute it. EI 
presents a framework in which biological systems exhibit learn- 
ing, memory, and decision-making through a hybrid symbolic–
subsymbolic architecture. By aligning epigenetic regulation with 
rinciples from cybernetics, AI, and statistical learning, we open a
ew avenue for understanding how life adapts and how machines
ight follow. 
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