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Abstract

Traditionally viewed as a set of switches regulating gene expression, epigenetic mechanisms may also operate as an information-
processing system with symbolic and subsymbolic features. In this framework, gene-specific DNA methylation and other localized
epigenetic marks act as symbolic ‘on/off’ signals, while repetitive and noncoding DNA elements form a substrate for probabilistic,
distributed responses to environmental stimuli. This hybrid perspective parallels machine-learning approaches, where symbolic rep-
resentations are combined with subsymbolic methods (e.g. neural networks) to achieve robust learning and adaptation. Here, we
propose that epigenetic regulation integrates these two dimensions (i.e. symbolic control and subsymbolic redundancy) to enable
cells to adapt to complex environmental challenges, maintain heritable memory of past exposures, and evolve. In this manuscript,
we introduce the concept of epigenetic intelligence, clarifying the synergy between discrete, ‘symbolic’ epigenetic switches (e.g. gene-
specific DNA methylation) and the more ‘subsymbolic’, distributed features of the genome (e.g. repetitive elements methylation). This
approach appears to be novel, as existing literature has not explicitly framed epigenetic regulation within a neuro-symbolic artificial

intelligence perspective.
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Introduction

Over the past two decades, epigenetics has transformed our un-
derstanding of how cells adapt to environmental stimuli without
altering the underlying DNA sequence [1]. Traditionally viewed as
a set of molecular switches that regulate gene expression, epi-
genetic mechanisms, particularly DNA methylation and histone
modifications, are now seen as dynamic contributors to cellular
memory and plasticity. Yet, a deeper conceptual framework may
be needed to explain the ‘intelligence’ with which these systems
operate.

In parallel, advances in artificial intelligence (AI) have led to
the rise of neuro-symbolic systems, which integrate logical, sym-
bolic reasoning with the adaptability of neural networks [2]. These
hybrid Al models exhibit robust learning, long-term memory, and
plasticity qualities that resonate strikingly with biological regu-
lation. Here, we propose that epigenetic mechanisms can be un-
derstood through a similar lens. By viewing the genome as a hy-
brid symbolic-subsymbolic system, we introduce the concept of
‘epigenetic intelligence’ (EI), a framework that positions gene reg-
ulation in analogy to computational process shaped by both rule-
based and probabilistic information layers. We adopt a broad def-

inition of EI that encompasses both the analogy with cognitive
architectures and the application of computational intelligence
tools (e.g. machine learning and statistical modelling) to study
epigenetic regulation. This framing aligns with earlier proposals
that ascribe logic-like behaviour or decision-making capacity to
cellular systems. For instance, Richardson [3] described epigenetic
processes as mechanisms for extracting deep correlations from
environmental inputs, while Ramanathan and Broach [4] ques-
tioned whether cells can ‘think’ by integrating multiple signals to
produce context-appropriate responses.

A more extensive elaboration of this conceptual framework has
been explored in a preprint currently available online [5].

A hybrid model of epigenetic control
Epigenetic regulation encompasses a broad spectrum of mecha-
nisms that operate at multiple scales, from fine-grained chemical
modifications on DNA and histones to large-scale chromatin ar-
chitecture. Within this complexity, two primary categories of reg-
ulation can be conceptually distinguished [6].

The first is localized, discrete, and deterministic. DNA methy-
lation at promoter CpG sites serves as a molecular switch,
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turning gene expression on or off in a stable and inheritable man-
ner [7]. Histone modifications further modulate gene accessibility,
and topological structures such as topologically associating do-
mains (TADs) organize the genome into functionally distinct re-
gions. These features correspond to the symbolic dimension of
computation, rule-based, interpretable, and hierarchically struc-
tured. They resemble logic gates in Al systems, offering precise
and persistent control over gene expression.

The second category is redundant, distributed, and probabilis-
tic. Repetitive DNA elements, including Long Interspersed Nuclear
Elements (LINEs), Short Interspersed Nuclear Elements (SINEs),
and endogenous retroviruses, form a dense, interconnected net-
work throughout the genome [8]. These sequences were once
considered genomic ‘dark matter’, or even ‘junk DNA’, but are
now recognized for their regulatory potential. Transposable ele-
ments can mobilize in response to stress or developmental cues,
reshaping gene networks. Noncoding RNAs also participate in
fine-tuning transcriptional responses. This ensemble forms a sub-
symbolic regulatory layer, analogous to the distributed, weight-
based adjustments of nodes in neural networks, supported by
flexibility, redundancy, and context-sensitive modulation. Un-
like discrete epigenetic marks, these mechanisms act collectively
and stochastically, generating plasticity and robustness through
diversity.

The integration of symbolic and subsymbolic layers allows the
genome to maintain both stability and dynamic adaptability. It
can preserve core regulatory programs, fixed through evolution,
while remaining responsive to novel environmental inputs. This
hybrid architecture mirrors the strengths of neuro-symbolic Al
systems: interpretability coupled with learning capacity.

Learning, memory, and feedback

Epigenetic systems exhibit multiple features that align with the
concept of biological learning. Environmental exposures, rang-
ing from nutrition and toxins to psychosocial stressors, can in-
duce stable epigenetic modifications that endure across cell gen-
erations, encoding a molecular memory of past experiences.
These changes influence developmental trajectories, immune re-
sponses, and even behavioural phenotypes.

This adaptive process is dynamic and iterative. Cells contin-
uously update their epigenetic landscape in response to inter-
nal and external signals, analogous to how artificial neural net-
works adjust weights based on new input. Feedback mecha-
nisms are crucial: when the activity of transposable elements dis-
rupts genome integrity, repressive complexes such as the Krippel-
associated box domain zinc finger proteins (KRAB-ZFPs) can re-
store chromatin compaction [9]. Alternatively, if transposable ele-
ments activate beneficial gene programs, chromatin remodellers
like p300 may stabilize their open conformation [10]. These loops
resemble reinforcement learning strategies, where beneficial out-
comes reinforce the epigenetic configuration.

Such memory is not merely individual but can span gener-
ations. Transgenerational epigenetic inheritance suggests that
some acquired epigenetic states are passed on to offspring, form-
ing a cumulative record of ancestral exposures. This property
highlights the long-term learning potential of the epigenome and
positions it as a central player in evolutionary adaptation.

Theoretical foundations: epigenetics meets
learning theory

Concepts from statistical learning theory provide a valuable
framework for understanding the computational logic underlying
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Figure 1. A conceptual model of EI as a hybrid regulatory system.
Symbolic (gene-specific) and subsymbolic (repetitive element-based)
epigenetic controls exhibit complementary properties. Symbolic
regulation enables interpretable and stable gene control via discrete
marks such as CpG methylation, while subsymbolic elements offer
distributed, probabilistic responsiveness through repetitive sequences
and transposon activity. Their integration, shown in the upper right
quadrant, defines El—a framework that balances regulatory efficiency
and interpretability to enhance adaptive generalization in complex
environments.

EI Key principles, such as the bias-variance trade-off, the Vapnik-
Chervonenkis dimension, probably approximately correct learn-
ing, and the information bottleneck theorem, all find meaningful
parallels in biological regulation [11, 12].

Symbolic epigenetic elements, such as methylation marks at
CpG islands, impose a high-bias structure, providing consistent,
rule-based regulation that favours generalization over flexibility.
In contrast, the subsymbolic network of repetitive elements intro-
duces variance, enabling fine-grained, context-aware responses
(Fig. 1). This trade-off reflects the balance between overfitting and
underfitting in machine-learning models, where a system must
generalize well without becoming too rigid or too noisy [13]. To
clarify their biological significance, we draw specific analogies; for
example, CpG methylation patterns can be seen as high-bias ele-
ments, encoding stable, generalizable gene silencing. In contrast,
the activity of transposable elements introduces regulatory vari-
ance, enabling the system to respond adaptively to environmen-
tal inputs. These dynamics reflect the classical machine-learning
balance between overfitting and generalization, interpreted here
as biological plasticity versus stability.

Bayesian principles offer a compelling unification of these per-
spectives. In a Bayesian neuro-symbolic model, prior knowledge
encoded in symbolic rules is updated through probabilistic in-
ference based on new data. Similarly, epigenetic regulation com-
bines stable, inherited patterns with plastic adjustments driven
by experience [14]. This integration allows cells to weigh histor-
ical stability against current demands, optimizing their regula-
tory output in uncertain environments. This conceptual map-
pingis supported by biological evidence. Regulatory proteins such
as KRAB-ZFPs and p300 mediate dynamic responses to envi-
ronmental stimuli by repressing or activating specific genomic
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loci, including transposable elements that can influence gene
regulation. These feedback mechanisms adjust the epigenetic
landscape based on previous and current conditions, in a way that
resembles how Bayesian systems update prior knowledge in light
of new data. Such probabilistic adaptation, while not literal infer-
ence, illustrates how cells weigh prior configurations with envi-
ronmental signals to optimize gene expression under uncertainty.
Moreover, we have expanded the framework to explicitly incorpo-
rate multiscale chromatin architecture. Structures such as TADs
and enhancer—-promoter loops play a key role in shaping gene
regulation. TADs contribute to symbolic control by establishing
stable, physical boundaries that constrain regulatory interactions
in a rule-like manner. In contrast, enhancer-promoter loops en-
able subsymbolic flexibility through transient, context-dependent
contacts that fine-tune gene expression. Together, these 3D fea-
tures integrate structural stability with dynamic adaptability, sup-
porting the proposed dual-layer model and linking genome topol-
ogy with principles from learning theory. However, the classifi-
cation of transposable elements as subsymbolic is not absolute:
many exhibit enhancer-like behaviour with precise spatiotempo-
ral regulation [15]. Our model accounts for this by viewing the
symbolic/subsymbolic divide as a continuum rather than a strict
dichotomy.

The genome, in this light, can be seen as a learning system,
one that encodes, updates, and refines regulatory logic through
hybrid symbolic and subsymbolic operations. Rather than viewing
epigenetics as a passive readout of environmental effects, the EI
framework proposes it as an active and integrative mechanism,
capable of learning, reasoning, and adapting.

This work aligns with the original cybernetic view of organ-
isms as adaptive control systems. We frame EI as an intrinsic
mechanism for minimizing uncertainty and maintaining home-
ostasis in dynamic environments. By linking symbolic priors (bias)
with stochastic adaptation (variance), the proposed model mirrors
optimal stochastic control as a bias-variance trade-off system,
essential for autonomous regulation in complex living systems
[16].

Broader implications and future directions
Reframing epigenetic regulation as a form of biological intelli-
gence has broad implications. It enriches our understanding of
genome function, offers a new paradigm for studying environ-
mental adaptation, and suggests a biomimetic roadmap for de-
veloping Al systems.

In medicine, EI could inform personalized risk prediction based
on the adaptability of an individual’s epigenetic profile. In syn-
thetic biology, designing gene circuits with symbolic and subsym-
bolic components may yield more robust, learning-capable organ-
isms.

Finally, this perspective invites deeper exploration of the paral-
lels between cellular cognition and machine learning [17, 18]. Just
as neuro-symbolic Al systems bridge logic and data, cells appear
to bridge inherited rules and learned responses. The same natural
principles that underpin adaptation in biological systems are now
being rediscovered and implemented in Al

Conclusion

The genome may not only encode life, but it may compute it. EI
presents a framework in which biological systems exhibit learn-
ing, memory, and decision-making through a hybrid symbolic—
subsymbolic architecture. By aligning epigenetic regulation with
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principles from cybernetics, Al, and statistical learning, we open a
new avenue for understanding how life adapts and how machines
might follow.
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